Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A modest fraction of the stars in galactic nuclei fed toward the central supermassive black hole (SMBH) approach on low-eccentricity orbits driven by gravitational-wave radiation (extreme mass ratio inspiral (EMRI)). In the likely event that a gaseous accretion disk is created in the nucleus during this slow inspiral (e.g., via an independent tidal disruption event (TDE)), star–disk collisions generate regular short-lived flares consistent with the observed quasiperiodic eruption (QPE) sources. We present a model for the coupled star-disk evolution, which self-consistently accounts for mass and thermal energy injected into the disk from stellar collisions and associated mass ablation. For weak collision/ablation heating, the disk is thermally unstable and undergoes limit-cycle oscillations, which modulate its properties and lead to accretion-powered outbursts on timescales of years to decades, with a time-averaged accretion rate ∼0.1Ṁ Edd. Stronger collision/ablation heating acts to stabilize the disk, enabling roughly steady accretion at the EMRI-stripping rate. In either case, the stellar destruction time through ablation, and hence the maximum QPE lifetime, is ∼102–103yr, far longer than fallback accretion after a TDE. The quiescent accretion disks in QPE sources may at the present epoch be self-sustaining and fed primarily by EMRI ablation. Indeed, the observed range of secular variability broadly matches those predicted for collision-fed disks. Changes in the QPE recurrence pattern following such outbursts, similar to that observed in GSN 069, could arise from temporary misalignment between the EMRI-fed disk and the SMBH equatorial plane as the former regrows its mass after a state transition.more » « less
-
Abstract Although stable neutron stars (NSs) can in principle exist down to massesMns≈ 0.1M⊙, standard models of stellar core-collapse predict a robust lower limitMns≳ 1.2M⊙, roughly commensurate with the Chandrasekhar massMChof the progenitor’s iron core (electron fractionYe≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye< 0.5) for which is reduced to ≲1M⊙. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched withr-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”).more » « less
-
Abstract Core-collapse supernovae (SNe) are candidate sites for rapid neutron capture process (r-process) nucleosynthesis. We explore the effects of enrichment fromr-process nuclei on the light curves of hydrogen-rich SNe and assess the detectability of these signatures. We modify the radiation hydrodynamics code, SuperNova Explosion Code, to include the approximate effects of opacity and radioactive heating fromr-process elements in the supernova (SN) ejecta. We present models spanning a range of totalr-process massesMrand their assumed radial distribution within the ejecta, finding thatMr≳ 10−2M⊙is sufficient to induce appreciable differences in their light curves as compared to ordinary hydrogen-rich SNe (without anyr-process elements). The primary photometric signatures ofr-process enrichment include a shortening of the plateau phase, coinciding with the hydrogen-recombination photosphere retreating to ther-process-enriched layers, and a steeper post-plateau decline associated with a reddening of the SN colors. We compare ourr-process-enriched models to ordinary SNe models and observational data, showing that yields ofMr≳ 10−2M⊙are potentially detectable across several of the metrics used by transient observers, provided thatr-process-rich layers are mixed at least halfway to the ejecta surface. This detectability threshold can roughly be reproduced analytically using a two-zone (kilonova-within-an-SN) picture. Assuming that a small fraction of SNe produce a detectabler-process yield ofMr≳ 10−2M⊙, and respecting constraints on the total Galactic production rate, we estimate that ≳103–104SNe need be observed to find oner-enriched event, a feat that may become possible with the Vera Rubin Observatory.more » « less
-
Abstract Identifying the sites of r-process nucleosynthesis, a primary mechanism of heavy element production, is a key goal of astrophysics. The discovery of the brightest gamma-ray burst (GRB) to date, GRB 221009A, presented an opportunity to spectroscopically test the idea that r-process elements are produced following the collapse of rapidly rotating massive stars. Here we present James Webb Space Telescope observations of GRB 221009A obtained +168 and +170 rest-frame days after the gamma-ray trigger, and demonstrate that they are well described by a SN 1998bw-like supernova (SN) and power-law afterglow, with no evidence for a component from r-process emission. The SN, with a nickel mass of approximately 0.09 M⊙, is only slightly fainter than the brightness of SN 1998bw at this phase, which indicates that the SN is not an unusual GRB-SN. This demonstrates that the GRB and SN mechanisms are decoupled and that highly energetic GRBs are not likely to produce significant quantities of r-process material, which leaves open the question of whether explosions of massive stars are key sources of r-process elements. Moreover, the host galaxy of GRB 221009A has a very low metallicity of approximately 0.12 Z⊙and strong H2emission at the explosion site, which is consistent with recent star formation, hinting that environmental factors are responsible for its extreme energetics.more » « less
An official website of the United States government
